想学习CompletableFuture,因此查询资料发现 CompletableFuture是JDK8中的新特性,主要用于对JDK5中加入的Future的补充。 CompletableFuture实现了CompletionStage和Future接口。 需要先了解Future接口 什么是Future? 简单来说future就是一个Future对象,当执行return await。。。的时候,实际上返回的是一个延迟计算的Future对象,这个Future对象是Dart内置的,有自己的队列策略,它将要操作的事件放入EventQueue中,在队列中的事件按照先进先出的原则去逐一处理事件,当事件处理完成后,将结果返回给Future对象。
在这个过程中涉及到了异步和等待:
异步:就是不用阻塞当前线程,来等待该线程任务处理完成再去执行其他任务。 等待:await,声明运算为延迟执行 async和await 首先看一个例子:
1 2 3 4 5 getData() async{ return await http.get(Uri.encodeFull(url), headers: {"Accept": "application/json"}); } //然后调用函数来获取结果 String data = getData();
这段代码在运行的时候会报错。 因为data是String类型,而函数getData()是一个异步操作函数,其返回值是一个await延迟执行的结果。 在Dart中,有await标记的运算,结果都是一个Future对象,Future不是String类型,所以就报错了。 如何获取异步函数的结果呢?Dart规定有async标记的函数,只能由await来调用,那么我们可以在函数前加一个await关键字:
1 2 3 4 String data; setData() async { data = await getData () ; }
async和await的使用其实就只有两点:
await关键字必须在async函数内部使用 调用async函数必须使用await关键字
Dart(释义:镖)异步 Dart是单线程模型,是一种Event-Looper以及Event-Queue的模型,所有的事件都是通过EventLooper的依次执行。
Event-Looper与Netty的NioEventLoopGroup异曲同工,都是线程模型
作者:zhaoolee 链接:https://www.jianshu.com/p/aefd0e50b802 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 单线程模型 所谓单线程,就是一旦一个函数开始执行,就必须将这个函数执行完,才能去执行其他函数
作者:MakerChin 链接:https://www.jianshu.com/p/890df7ea8f87 来源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 Future接口的方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 public interface Future <V > { boolean cancel (boolean mayInterruptIfRunning) ; boolean isCancelled () ; boolean isDone () ; V get () throws InterruptedException, ExecutionException ; V get (long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException ;}
调用不带参数的get方法的调用被阻塞,直到计算完成。如果在计算完成之前,调用带参get()方法超时时,会抛出TimeoutException异常。若运行该计算的线程被中断,两种get()方法都会抛出InterruptedException。如果计算已经完成,那么get方法立即返回。 若计算还在进行,isDone方法返回false;如果完成了,则返回true。 调用cancel()时,若计算还没有开始,它被取消且不再开始。若计算处于运行之中,那么如果mayInterrupt参数为true,它就被中断。 相比future.get(),其实更推荐使用get (long timeout, TimeUnit unit) 方法,因为设置了超时时间可以防止程序无限制的等待future的返回结果。 FutureTask源码解析 构造方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 public FutureTask (Callable<V> callable) { if (callable == null ) throw new NullPointerException(); this .callable = callable; this .state = NEW; } public FutureTask (Runnable runnable, V result) { this .callable = Executors.callable(runnable, result); this .state = NEW; }
实际上Callable = Runnable + result,继续看上面的第二个构造方法,看看Executors.callable(runnable, result)的实现:
1 2 3 4 5 6 public static <T> Callable<T> callable (Runnable task, T result) { if (task == null ) throw new NullPointerException(); return new RunnableAdapter<T>(task, result); }
状态值
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 private volatile int state;private static final int NEW = 0 ;private static final int COMPLETING = 1 ;private static final int NORMAL = 2 ;private static final int EXCEPTIONAL = 3 ;private static final int CANCELLED = 4 ;private static final int INTERRUPTING = 5 ;private static final int INTERRUPTED = 6 ;
FutureTask的run方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 public void run () { if (state != NEW || !UNSAFE.compareAndSwapObject(this , runnerOffset, null , Thread.currentThread())) return ; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true ; } catch (Throwable ex) { result = null ; ran = false ; setException(ex); } if (ran) set(result); } } finally { runner = null ; int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
set方法:
1 2 3 4 5 6 7 8 9 10 11 12 protected void set (V v) { if (UNSAFE.compareAndSwapInt(this , stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this , stateOffset, NORMAL); finishCompletion(); } }
get方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 public V get () throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false , 0L ); return report(s); } public V get (long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null ) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true , unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); }
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https://blog.csdn.net/itcats_cn/article/details/81322122
CompletableFuture类的官方API文档解释:
CompletableFuture是一个在完成时可以触发相关方法和操作的Future,并且它可以视作为CompletableStage。 除了直接操作状态和结果的这些方法和相关方法外(CompletableFuture API提供的方法),CompletableFuture还实现了以下的CompletionStage的相关策略: ① 非异步方法的完成,可以由当前CompletableFuture的线程提供,也可以由其他调用完方法的线程提供。 ② 所有没有显示使用Executor的异步方法,会使用ForkJoinPool.commonPool()(那些并行度小于2的任务会创建一个新线程来运行)。为了简化监视、调试和跟踪异步方法,所有异步任务都被标记为CompletableFuture.AsynchronouseCompletionTask。 ③ 所有CompletionStage方法都是独立于其他公共方法实现的,因此一个方法的行为不受子类中其他方法的覆盖影响。 CompletableFuture还实现了Future的以下策略 ① 不像FutureTask,因CompletableFuture无法直接控制计算任务的完成,所以CompletableFuture的取消会被视为异常完成。调用cancel()方法会和调用completeExceptionally()方法一样,具有同样的效果。isCompletedEceptionally()方法可以判断CompletableFuture是否是异常完成。 ② 在调用get()和get(long, TimeUnit)方法时以异常的形式完成,则会抛出ExecutionException,大多数情况下都会使用join()和getNow(T),它们会抛出CompletionException。 小结:
Concurrent包中的Future在获取结果时会发生阻塞,而CompletableFuture则不会,它可以通过触发异步方法来获取结果。 在CompletableFuture中,如果没有显示指定的Executor的参数,则会调用默认的ForkJoinPool.commonPool()。 调用CompletableFuture的cancel()方法和调用completeExceptionally()方法的效果一样。 在JDK5中,使用Future来获取结果时都非常的不方便,只能通过get()方法阻塞线程或者通过轮询isDone()的方式来获取任务结果,这种阻塞或轮询的方式会无畏的消耗CPU资源,而且还不能及时的获取任务结果,因此JDK8中提供了CompletableFuture来实现异步的获取任务结果。
使用下CompletableFuture的API CompletableFuture类提供了非常多的方法供我们使用,包括了runAsync()、supplyAsync()、thenAccept()等方法。 runAsync(),异步运行:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 @Test public void runAsyncExample () throws Exception { ExecutorService executorService = Executors.newSingleThreadExecutor(); CompletableFuture cf = CompletableFuture.runAsync(() -> { try { Thread.sleep(2000 ); } catch (Exception e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName()); }, executorService); System.out.println(Thread.currentThread().getName()); while (true ) { if (cf.isDone()) { System.out.println("CompletedFuture...isDown" ); break ; } } }
运行结果:
1 2 3 4 main pool-1 -thread-1 CompletedFuture…isDown
这里调用的runAsync()方法没有使用ForkJoinPool的线程,而是使用了Executors.newSingleThreadExecutor()中的线程。runAsync()其实效果跟单开一个线程一样。 supplyAsync()
supply有供应的意思,supplyAsync就可以理解为异步供应,查看supplyAsync()方法入参可以知道,其有两个入参:
1 2 Supplier supplier, Executor executor
这里先简单介绍下Supplier接口,Supplier接口是JDK8引入的新特性,它也是用于创建对象的,只不过调用Supplier的get()方法时,才会去通过构造方法去创建对象,并且每次创建出的对象都不一样。Supplier常用语法为:Supplier sup= MySupplier::new; 再展示代码例子之前,再讲一个thenAccept()方法,可以发现thenAccept()方法的入参如下:
1 2 3 4 5 6 7 Comsumer<? super T> Comsumer接口同样是java8新引入的特性,它有两个重要接口方法: accept() andThen() thenAccept()可以理解为接收CompletableFuture的结果然后再进行处理。
下面看下supplyAsync()和thenAccept()的例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 public void thenApply() throws Exception { ExecutorService executorService = Executors.newFixedThreadPool(2); CompletableFuture cf = CompletableFuture.supplyAsync(() -> { //实现了Supplier的get()方法 try { Thread.sleep(2000); } catch (Exception e) { e.printStackTrace(); } System.out.println("supplyAsync " + Thread.currentThread().getName()); return "hello "; },executorService).thenAccept(s -> { //实现了Comsumper的accept()方法 try { thenApply_test(s + "world"); } catch (Exception e) { e.printStackTrace(); } }); System.out.println(Thread.currentThread().getName()); while (true) { if (cf.isDone()) { System.out.println("CompletedFuture...isDown"); break; } } }
运行结果如下:
1 2 3 4 main supplyAsync pool-1-thread-1 thenApply_test hello world thenApply_test pool-1-thread-1
从代码逻辑可以看出,thenApply_test等到了pool-1-thread-1线程完成任务后,才进行的调用,并且拿到了supplye()方法返回的结果,而main则异步执行了,这就避免了Future获取结果时需要阻塞或轮询的弊端。 exceptionally 当任务在执行过程中报错了咋办?exceptionally()方法很好的解决了这个问题,当报错时会去调用exceptionally()方法,它的入参为:Function<Throwable, ? extends T> fn,fn为执行任务报错时的回调方法,下面看看代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 public void exceptionally() { ExecutorService executorService = Executors.newSingleThreadExecutor(); CompletableFuture cf = CompletableFuture.supplyAsync(() -> { try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } if (1 == 1) { throw new RuntimeException("测试exceptionally..."); } return "s1"; }, executorService).exceptionally(e -> { System.out.println(e.getMessage()); return "helloworld " + e.getMessage(); }); cf.thenAcceptAsync(s -> { System.out.println("thenAcceptAsync: " + s); }); System.out.println("main: " + Thread.currentThread().getName()); while (true) {} }
运行结果:
1 2 3 4 main: main java.lang.RuntimeException: 测试exceptionally… CompletableFuture is Down…helloworld java.lang.RuntimeException: 测试exceptionally… thenAcceptAsync: helloworld java.lang.RuntimeException: 测试exceptionally…
从代码以及运行结果来看,当任务执行过程中报错时会执行exceptionally()中的代码,thenAcceptAsync()会获取抛出的异常并输出到控制台,不管CompletableFuture()执行过程中报错、正常完成、还是取消,都会被标示为已完成,所以最后CompletableFuture.isDown()为true。
在Java8中,新增的ForkJoinPool.commonPool()方法,这个方法可以获得一个公共的ForkJoin线程池,这个公共线程池中的所有线程都是Daemon线程,意味着如果主线程退出,这些线程无论是否执行完毕,都会退出系统。
2.3 源码分析 CompletableFuture类实现了Future接口和CompletionStage接口,Future大家都经常遇到,但是这个CompletionStage接口就有点陌生了,这里的CompletionStage实际上是一个任务执行的一个“阶段”,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 public class CompletableFuture<T> implements Future<T>, CompletionStage<T> { volatile Object result; // CompletableFuture的结果值或者是一个异常的报装对象AltResult volatile Completion stack; // 依赖操作栈的栈顶 ... // CompletableFuture的方法 ... // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long RESULT; private static final long STACK; private static final long NEXT; static { try { final sun.misc.Unsafe u; UNSAFE = u = sun.misc.Unsafe.getUnsafe(); Class<?> k = CompletableFuture.class; RESULT = u.objectFieldOffset(k.getDeclaredField("result")); //计算result属性的位偏移量 STACK = u.objectFieldOffset(k.getDeclaredField("stack")); //计算stack属性的位偏移量 NEXT = u.objectFieldOffset (Completion.class.getDeclaredField("next")); //计算next属性的位偏移量 } catch (Exception x) { throw new Error(x); } } }
在CompletableFuture中有一个静态代码块,在CompletableFuture类初始化之前就进行调用,代码块里的内容就是通过Unsafe类去获取CompletableFuture的result、stack和next属性的“偏移量”,这个偏移量主要用于Unsafe的CAS操作时进行位移量的比较。 runAsync(Runnable, Executor) & runAsync(Runnable) runAsync()做的事情就是异步的执行任务,返回的是CompletableFuture对象,不过CompletableFuture对象不包含结果。runAsync()方法有两个重载方法,这两个重载方法的区别是Executor可以指定为自己想要使用的线程池,而runAsync(Runnable)则使用的是ForkJoinPool.commonPool()。
下面先来看看runAsync(Runnable)的源码:
1 2 3 4 public static CompletableFuture<Void> runAsync(Runnable runnable) { return asyncRunStage(asyncPool, runnable); } 这里的asyncPool是一个静态的成员变量:
private static final boolean useCommonPool = (ForkJoinPool.getCommonPoolParallelism() > 1); // 并行级别 private static final Executor asyncPool = useCommonPool ? ForkJoinPool.commonPool() : new ThreadPerTaskExecutor(); 回到asyncRunStage()源码:
1 2 3 4 5 6 static CompletableFuture<Void> asyncRunStage(Executor e, Runnable f) { if (f == null) throw new NullPointerException(); CompletableFuture<Void> d = new CompletableFuture<Void>(); e.execute(new AsyncRun(d, f)); return d; }
看到asyncRunStage()源码,可以知道任务是由Executor来执行的,那么可想而知Async类一定是实现了Callable接口或者继承了Runnable类,查看Async类:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 static final class AsyncRun extends ForkJoinTask<Void> implements Runnable, AsynchronousCompletionTask { CompletableFuture<Void> dep; Runnable fn; AsyncRun(CompletableFuture<Void> dep, Runnable fn) { this.dep = dep; this.fn = fn; } public final Void getRawResult() { return null; } public final void setRawResult(Void v) {} public final boolean exec() { run(); return true; } public void run() { CompletableFuture<Void> d; Runnable f; if ((d = dep) != null && (f = fn) != null) { dep = null; fn = null;//释放掉内存 if (d.result == null) { try { f.run(); d.completeNull(); } catch (Throwable ex) { d.completeThrowable(ex); } } d.postComplete(); // 任务结束后,会执行所有依赖此任务的其他任务,这些任务以一个无锁并发栈的形式存在 } } }
在AsyncRun类中,实现了Runnable接口的run()方法,在run()方法内部,会调用传进来的Runnable对象的run()方法,这里就需要用户自己去实现了,上文中的实例代码就是通过Lambda表达式来实现了Runnable接口。调用了f.run()之后,然后就是completeNull()方法了,该方法底层通过调用UNSAFE类的compareAndSwapObject()方法,来以CAS的方式将CompletableFuture的结果赋为null。postComplete()就是任务结束后,会执行所有依赖此任务的其他任务,这些任务以一个无锁并发栈的形式存在。 postComplete()的源码还是有点复杂的,先不急着分析。先看看Completion这个抽象类的数据结构组成:
Completion 下面先看看Completion的源码:
1 2 3 4 5 6 7 8 9 10 11 12 13 如果触发,则执行完成操作,返回可能需要传播的依赖项(如果存在)。 @param mode SYNC, ASYNC, or NESTED abstract static class Completion extends ForkJoinTask<Void> implements Runnable, AsynchronousCompletionTask { volatile Completion next; abstract CompletableFuture<?> tryFire(int mode); abstract boolean isLive(); public final void run() { tryFire(ASYNC); } public final boolean exec() { tryFire(ASYNC); return true; } public final Void getRawResult() { return null; } public final void setRawResult(Void v) {} }
Completion是一个抽象类,分别实现了Runnable、AsynchronousCompletionTask接口,继承了ForkJoinPoolTask类,而ForJoinPoolTask抽象类又实现了Future接口,因此Completion实际上就是一个Future。可以看到Completion的抽象方法和成员方法的实现逻辑都短短一行或者没有,可以猜到这些方法的实现都是在其子类中。其实现类包括了UniCompletion、BiCompletion、UniAccept、BiAccept等,如下图:
而Completion类中还有一个非常重要的成员属性
1 volatile Completion next;
有印象的读者应该能记得,CompletableFuture中有一个属性——stack,就是Completion类的。
1 volatile Completion stack;
由这个属性可以看出,CompletableFuture其实就是一个链表的一个数据结构。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 abstract static class UniCompletion<T,V> extends Completion { Executor executor; // executor to use (null if none) CompletableFuture<V> dep; // 代表的依赖的CompletableFuture CompletableFuture<T> src; // 代表的是源CompletableFuture UniCompletion(Executor executor, CompletableFuture<V> dep, CompletableFuture<T> src) { this.executor = executor; this.dep = dep; this.src = src; } /** * 确保当前Completion可以被调用;并且使用ForkJoinPool标记为来确保只有一个线程可以调用, * 如果是异步的,则在任务启动之后通过tryFire来进行调用。tryFire方法时在UniAccept类中。 */ final boolean claim() { Executor e = executor; if (compareAndSetForkJoinTaskTag((short)0, (short)1)) { if (e == null) return true; executor = null; // disable e.execute(this); } return false; } final boolean isLive() { return dep != null; } }
claim方法要在执行action前调用,若claim方法返回false,则不能调用action,原则上要保证action只执行一次。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 static final class UniAccept<T> extends UniCompletion<T,Void> { Consumer<? super T> fn; UniAccept(Executor executor, CompletableFuture<Void> dep, CompletableFuture<T> src, Consumer<? super T> fn) { super(executor, dep, src); this.fn = fn; } /** * 尝试去调用当前任务。uniAccept()方法为核心逻辑。 */ final CompletableFuture<Void> tryFire(int mode) { CompletableFuture<Void> d; CompletableFuture<T> a; if ((d = dep) == null || !d.uniAccept(a = src, fn, mode > 0 ? null : this)) return null; dep = null; src = null; fn = null; return d.postFire(a, mode); } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 final <S> boolean uniAccept(CompletableFuture<S> a, Consumer<? super S> f, UniAccept<S> c) { Object r; Throwable x; if (a == null || (r = a.result) == null || f == null) //判断源任务是否已经完成了,a表示的就是源任务,a.result就代表的是原任务的结果。 return false; tryComplete: if (result == null) { if (r instanceof AltResult) { if ((x = ((AltResult)r).ex) != null) { completeThrowable(x, r); break tryComplete; } r = null; } try { if (c != null && !c.claim()) return false; @SuppressWarnings("unchecked") S s = (S) r; f.accept(s); //去调用Comsumer completeNull(); } catch (Throwable ex) { completeThrowable(ex); } } return true; }
对于Completion的执行,还有几个关键的属性:
1 2 3 static final int SYNC = 0;//同步 static final int ASYNC = 1;//异步 static final int NESTED = -1;//嵌套
Completion在CompletableFuture中是如何工作的呢?现在先不着急了解其原理,下面再去看下一个重要的接口——CompletionStage。
CompletionStage 下面介绍下CompletionStage接口。看字面意思可以理解为“完成动作的一个阶段”,查看官方注释文档:CompletionStage是一个可能执行异步计算的“阶段”,这个阶段会在另一个CompletionStage完成时调用去执行动作或者计算,一个CompletionStage会以正常完成或者中断的形式“完成”,并且它的“完成”会触发其他依赖的CompletionStage。CompletionStage 接口的方法一般都返回新的CompletionStage,因此构成了链式的调用。 【下文中Stage代表CompletionStage】
那么在Java中什么是CompletionStage呢? 官方定义中,一个Function,Comsumer或者Runnable都会被描述为一个CompletionStage,相关方法比如有apply,accept,run等,这些方法的区别在于它们有些是需要传入参,有些则会产生“结果”。
Funtion方法会产生结果 Comsumer会消耗结果 Runable既不产生结果也不消耗结果 下面看看一个Stage的调用例子:
stage.thenApply(x -> square(x)).thenAccept(x -> System.out.println(x)).thenRun(() -> System.out.println()) 1 这里x -> square(x)就是一个Function类型的Stage,它返回了x。x -> System.out.println(x)就是一个Comsumer类型的Stage,用于接收上一个Stage的结果x。() ->System.out.println()就是一个Runnable类型的Stage,既不消耗结果也不产生结果。
一个、两个或者任意一个CompletionStage的完成都会触发依赖的CompletionStage的执行,CompletionStage的依赖动作可以由带有then的前缀方法来实现。如果一个Stage被两个Stage的完成给触发,则这个Stage可以通过相应的Combine方法来结合它们的结果,相应的Combine方法包括:thenCombine、thenCombineAsync。但如果一个Stage是被两个Stage中的其中一个触发,则无法去combine它们的结果,因为这个Stage无法确保这个结果是那个与之依赖的Stage返回的结果。
1 2 3 4 5 6 7 8 9 10 @Test public void testCombine() throws Exception { String result = CompletableFuture.supplyAsync(() -> { return "hello"; }).thenCombine(CompletableFuture.supplyAsync(() -> { return " world"; }), (s1, s2) -> s1 + " " + s2).join(); System.out.println(result); }
虽然Stage之间的依赖关系可以控制触发计算,但是并不能保证任何的顺序。
另外,可以用一下三种的任何一种方式来安排一个新Stage的计算:default execution、default asynchronous execution(方法后缀都带有async)或者custom(自定义一个executor)。默认和异步模式的执行属性由CompletionStage实现而不是此接口指定。
小结:CompletionStage确保了CompletableFuture能够进行链式调用。
下面开始介绍CompletableFuture的几个核心方法:
postComplete
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 final void postComplete() { CompletableFuture<?> f = this; Completion h; //this表示当前的CompletableFuture while ((h = f.stack) != null || //判断stack栈是否为空 (f != this && (h = (f = this).stack) != null)) { CompletableFuture<?> d; Completion t; if (f.casStack(h, t = h.next)) { //通过CAS出栈, if (t != null) { if (f != this) { pushStack(h); //如果f不是this,将刚出栈的h入this的栈顶 continue; } h.next = null; // detach 帮助GC } f = (d = h.tryFire(NESTED)) == null ? this : d; //调用tryFire } } }
postComplete()方法可以理解为当任务完成之后,调用的一个“后完成”方法,主要用于触发其他依赖任务。
uniAccept
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 final <S> boolean uniAccept(CompletableFuture<S> a, Consumer<? super S> f, UniAccept<S> c) { Object r; Throwable x; if (a == null || (r = a.result) == null || f == null) //判断当前CompletableFuture是否已完成,如果没完成则返回false;如果完成了则执行下面的逻辑。 return false; tryComplete: if (result == null) { if (r instanceof AltResult) { //判断任务结果是否是AltResult类型 if ((x = ((AltResult)r).ex) != null) { completeThrowable(x, r); break tryComplete; } r = null; } try { if (c != null && !c.claim()) //判断当前任务是否可以执行 return false; @SuppressWarnings("unchecked") S s = (S) r; //获取任务结果 f.accept(s); //执行Comsumer completeNull(); } catch (Throwable ex) { completeThrowable(ex); } } return true; }
这里有一个很巧妙的地方,就是uniAccept的入参中,CompletableFuture a表示的是源任务,UniAccept c中报装有依赖的任务,这点需要清除。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pushStack final void pushStack(Completion c) { do {} while (!tryPushStack(c)); //使用CAS自旋方式压入栈,避免了加锁竞争 } final boolean tryPushStack(Completion c) { Completion h = stack; lazySetNext(c, h); //将当前stack设置为c的next return UNSAFE.compareAndSwapObject(this, STACK, h, c); //尝试把当前栈(h)更新为新值(c) } static void lazySetNext(Completion c, Completion next) { UNSAFE.putOrderedObject(c, NEXT, next); }
光分析源码也没法深入理解其代码原理,下面结合一段示例代码来对代码原理进行分析。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 @Test public void thenApply() throws Exception { ExecutorService executorService = Executors.newFixedThreadPool(2); CompletableFuture cf = CompletableFuture.supplyAsync(() -> { try { //休眠200秒 Thread.sleep(200000); } catch (Exception e) { e.printStackTrace(); } System.out.println("supplyAsync " + Thread.currentThread().getName()); return "hello "; },executorService).thenAccept(s -> { try { thenApply_test(s + "world"); } catch (Exception e) { e.printStackTrace(); } }); System.out.println(Thread.currentThread().getName()); while (true) { if (cf.isDone()) { System.out.println("CompletedFuture...isDown"); break; } } }
1 2 3 4 5 6 7 /** 运行结果: main supplyAsync pool-1-thread-1 thenApply_test hello world thenApply_test pool-1-thread-1 CompletedFuture...isDown */
这段示例代码所做的事情就是supplyAsync(Supplier supplier)休眠200秒之后,返回一个字符串,thenAccept(Consumer<? super T> action)等到任务完成之后接收这个字符串,并且调用thenApply_test()方法,随后输出 hello world。 代码中让线程休眠200秒是为了方便观察CompletableFuture的传递过程。
下面就描述下程序的整个运作流程。 ① 主线程调用CompletableFuture的supplyAsync()方法,传入Supplier和Executor。在supplyAsync()中又继续调用CompletableFuture的asyncSupplyStage(Executor, Supplier)方法。
来到asyncSupplyStage()方法中,调用指定的线程池,并执行execute(new AsyncSupply(d,f)),这里d就是我们的“源任务”,接下来thenApply()要依赖着这个源任务进行后续逻辑操作,f就是Supplier的函数式编程。
AsyncSupply实现了Runnable的run()方法,核心逻辑就在run()方法里。在run()方法里,先判断d.result == null,判断该任务是否已经完成,防止并发情况下其他线程完成此任务了。f.get()就是调用的Supplier的函数式编程,这里会休眠200秒,所以executor线程池开启的线程会在这里阻塞200秒。
② 虽然executor线程池线程阻塞了,但是main线程任然会继续执行接下来的代码。
main线程会在asyncSupplyStage()方法中返回d,就是我们的“依赖任务”,而这个任务此时还处在阻塞中。接下来main线程会继续执行CompletableFuture的thenAccept(Comsumer<? super T> action)方法,然后调用CompletableFuture的uniAcceptStage()方法。 在这里插入图片描述 在uniAcceptStage()方法中,会将“依赖任务”、“源任务”、线程池以及Comsumer报装程一个UniAccept对象,然后调用push()压入stack的栈顶中。随后调用UniAccept的tryFire()方法。 在这里插入图片描述 其中的CompletableFuture的uniAccept()方法会判断任务是否完成,判断依据是a.result 是否为空,这里的a就是之前传入的“源任务”,等到“源任务”阻塞200秒过后,就会完成任务,并将字符串存入到 result中。 在这里插入图片描述 判断到“源任务”完成之后,就会调用接下来的逻辑。s拿到的值就是“源”任务返回的字符串,并且传入到了Comsumer.accept()方法中。然而“源任务”还在阻塞中,main线程会跳出uniAccept(),继续执行接下来的逻辑。接下来就是输出当前线程的名字,然后调用while(true),结束条件为CompletableFuture.isDone(),当任务完成时则结束while(true)循环。
③ 回到“源任务”,虽然main线程已经结束了整个生命周期,但是executor线程池的线程任然阻塞着的,休眠了200秒之后,继续执行任务。 在这里插入图片描述 然后来到了postComplete()方法。这个方法在前面已经介绍到了,它是CompletableFuture的核心方法之一,做了许多事情。最重要的一件事情就是触发其他依赖任务,接下来调用的方法依次为:UniAccept.tryFire(mode) ——> CompletableFuture.uniAccept(…) ——> Comsumer.accept(s) ——> 输出“hello world”,并输出当前调用线程的线程名。因这个调用链已经在②中介绍过了,所以就不再详细介绍其运作逻辑。 测试
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 public static void main(String[] args) throws ExecutionException, InterruptedException { runAsync(); supplyAsync(); } //无返回值 public static void runAsync() throws ExecutionException, InterruptedException { CompletableFuture<Void> future = CompletableFuture.runAsync(() -> { try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { } System.out.println("run end ..."); }); future.get(); } //有返回值 public static void supplyAsync() throws ExecutionException, InterruptedException { CompletableFuture<Long> future = CompletableFuture.supplyAsync(() -> { try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) { } System.out.println("run end ..."); return System.currentTimeMillis(); }); long time = future.get(); System.out.println("time = "+time); }
输出结果
1 2 3 run end ... run end ... time = 1596010020281
小结: 通过这个小示例,终于理解到了“源任务”和“依赖任务”之间的调用关系,以及CompletableFuture的基本运作原理。然而CompletableFuture还有其他的方法需要去深入分析,由于篇幅所限就不再赘述,感兴趣的读者可以以debug的模式去一点一点分析CompletableFuture其他方法的底层原理。这里不得不说Java并发包作者Doug Lea大神真的太厉害了,阅读他的源码之后,可以发现他写的代码不能以技术来形容,而应该使用“艺术”来形容。
总结 CompletableFuture底层由于借助了魔法类Unsafe的相关CAS方法,除了get或join结果之外,其他方法都实现了无锁操作。 CompletableFuture实现了CompletionStage接口,因而具备了链式调用的能力,CompletionStage提供了either、apply、run以及then等相关方法,使得CompletableFuture可以使用各种应用场景。 CompletableFuture中有“源任务”和“依赖任务”,“源任务”的完成能够触发“依赖任务”的执行,这里的完成可以是返回正常结果或者是异常。 CompletableFuture默认使用ForkJoinPool,也可以使用指定线程池来执行任务。